Hall Ticket Number:

Code No. : 6134

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.E. (ECE: CBCS) I-Semester Main Examinations, Jan./Feb.-2017

(Embedded Systems & VLSI Design)

Physics of Semiconductor Devices

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 \text{ Marks})$

- 1. List some important differences between metals, semiconductors and insulators.
- 2. What do you understand by "effective mass of carriers" in semiconductors?
- Why a normal silicon diode cannot be used for microwave and high frequency applications? Give proper reasoning.
- 4. Draw model graph showing the output characteristics of a bipolar transistor. Indicate the region that is influenced by Early effect.
- 5. For an n-channel n⁺-poly silicon $-\text{SiO}_2$ -Si MOSFET with C₀ = 6.9 × 10⁻⁷ F/cm⁻³ and V_{FB} = -1.1V. Calculate threshold voltage when $2\Psi_B = 0.84 V$, $\varepsilon_s = 11.9 \times 8.85 \times 10^{-14}$.
- Sketch a model graph showing the "Capacitance Voltage (C-V)" characteristics of a MOS Diode. Identify different regions of operation.
- 7. What is sub threshold current in MOSFETs and what is its significance?
- 8. List some important differences between long channel and short channel devices.
- 9. Give examples of any two materials that are most suited for fabricating Transferred Electron Devices (TEDs).
- 10. Distinguish direct and indirect band gap materials with the help of energy band diagrams.

Part-B (5 × 10 = 50 Marks)

11. a) Define mobility and Diffusivity of carriers in Semiconductors. Derive the following [6] relation between the diffusivity (D_n) and mobility (μ_n) of electrons in semiconductors.

$$\frac{D_n}{\mu_n} = \frac{K_B T}{e}$$

b) The mobility and effective mass of electrons in GaAs are $8500 \text{ cm}^2/\text{V.s}$ and 0.067m_0 [4] respectively. Calculate

i) the relaxation time and

ii) Diffusivity of electrons in GaAs at 300 K.

- 12. a) Draw schematics showing *i*) the profiles of charge densities, electric field and potential [6] in the depletion region of an unbiased p-n diode and *ii*) the depletion layer, profiles of minority carriers and components of currents in a forward biased p-n diode.
 - b) Sketch the energy band diagram of a p-n diode under thermal equilibrium [4] (under NO applied bias) and show that the built-in voltage (V_{bi}) is given by:

$$V_{bi} = \frac{K_B T}{e} \ln\left(\frac{n_n}{n_p}\right)$$

		:: 2 :: Code No. :	6134
13.	a)	Draw the schematic diagram and explain the operation of an n-channel enhancement type MOSFET.	[6]
	b)	Consider a GaAs MESFET with gold Schottky barrier of barrier height 0.8 V. The n-channel doping is 10^{17} cm ⁻³ and the channel thickness is 0.25μ m. Calculate the pinch-off voltage and threshold voltage at 300 K (Note: $\varepsilon_r = 13.2$ and $N_C = 4.45 \times 10^{17}$ cm ⁻³ for GaAs).	[4]
14.	a)	Identify and Discuss about the effects of channel length on various properties of MOSFETs.	[6]
	b)	Discuss about "band-gap engineering" in detail.	[4]
15.	a)	What is transferred electron effect? How it can lead to negative differential resistance (NDR)? What are the possible applications of NDR in electronic devices?	[5]
	b)	Describe the structure and operation of a LASER Diode. How is it different from a simple LED?	[5]
16.	a)	Explain Hall Effect with the help of neat diagrams and necessary equations. Mention some important applications for Hall Effect.	[5]
	b)	Describe Ebers-Moll model for a bipolar junction transistor with the help of neat diagrams and necessary equations.	[5]
17.	Wr	ite short notes on any <i>two</i> of the following:	
		a) Buried Channel Devices	[5]
		b) Silicon on Insulator (SOI) Devices	[5]
		c) Floating Gate Devices.	[5]

୯୫୯୫୯୫୦୫୦୫୦

:: 2 ::